SOALSOAL 1.3 SUMBER : sahabat informasi Tunjukkan masing-masing selang berikut pada garis riil (-4,1) Pembahasan: Pada selang (-4,1), di sebelah kiri bilangan -4 menggunakan tanda kurung biasa, berarti bilangan -4 tidak masuk dalam selang ini, dan di sebelah kanan bilangan 1 juga menggunakan tanda kurung biasa, berarti bilangan 1 juga tidak masuk dalam selang ini.
Pesertadidik mengkomunikasikan secara lisan atau mempresentasikan mengenai PtLSV dalam berbagai bentuk dan variabel dan cara menentukan bentuk setara dan penyelesaian dari PtLSV. Peserta didik dan guru secara bersama-sama membahas contoh dalam buku paket mengenai cara membuat garis bilangan yang menyatakan suatu pertidaksamaan dan. mengenai
Penyelesaianpertidaksamaan di atas dapat pula diterangkan sebagai berikut: ruas kiri pertidaksamaan bermilai nol jika x = 2 atau x = 3 . Selanjutnya, ke dua bilangan ini membagi garis bilangan menjadi 3 bagian: x < 2, 2 < x < 3, dan x > 3(Gambar 1.1.4).
Padagambar di bawah, daerah yang diarsir merupakan grafik himpunan penyelesaian sistem pertidaksamaan linear. Nilai maksimum bentuk obyektif 3x + 5y, dengan x C pada himpunan penyelesaian itu adalahA. 20 B. 33 C. 34 D. 40 E. 45 11. Letak dan nilai minimum F(x,y) = 10x + 30y pada daerah yang diarsir . . .
Gambarpertidaksamaan berikut pada garis bilangan. d. u<141
Teksvideo. soal kita pada kali ini adalah menggambar pertidaksamaan pada garis bilangan untuk mengerjakannya teman-teman kita menggambar dulu garis bilangannya garis kemudian sini ada angka 4 kita tulis angka 4 berarti di sebelah sini 5 Dian 6 dan seterusnya sementara di sebelah kirinya 32 dan seterusnya lalu ke arah mana kita mau menentukan daerah arsirannya? kalian di sini Teh lebih besar
hIWSYag. Hai Quipperian, apakah kamu masih ingat konsep pertidaksamaan kuadrat? Di artikel sebelumnya, Quipper Blog pernah membahas tentang pertidaksamaan kuadrat lengkap dengan penjabaran garis bilangannya. Nah, pada artikel ini kamu akan diajak untuk menyimak contoh soal tentang pertidaksamaan kuadrat, lho. Daripada penasaran, yuk cekidot! Contoh Soal 1 Suatu pertidaksamaan kuadrat menghasilkan garis bilangan seperti berikut. Solusi yang tepat untuk pertidaksamaan kuadrat tersebut adalah {x-2 3} {xx β€ -2 atau x 4} {x -3 0 adalah {x x 3/2} {x -1 3/2} {x x > -1 atau x 0 β 2x β 3 x + 1 > 0 Selanjutnya, tentukan titik pembuat nolnya. Substitusikan nilai x pembuat nolnya pada garis bilangan. Jadi, himpunan penyelesaian pertidaksamaan tersebut adalah {x x 3/2} Jawaban C Contoh Soal 4 Nilai x yang memenuhi pertidaksamaan x2 β 2x β₯ 24 adalah x -4 atau x 7} {x-7 {x2 {x-2β€xβ€7} {x-1 Pembahasan Pertama, kamu harus memfaktorkan bentuk kuadrat pada soal. x2 β 5x β 14 β€ 0 x β 7x β 2 β€ 0 Selanjutnya, tentukan titik pembuat nolnya. x β 7x β 2 β€ 0 β x = 7 atau x = -2 Substitusikan nilai x pembuat nol pada garis bilangan. Ingat, tanda pertidaksamaannya adalah lebih besar sama dengan. Artinya, titik bulatannya harus penuh, ya. Jadi, solusi dari pertidaksamaan tersebut adalah {x-2β€xβ€7}. Jawaban D Contoh Soal 6 Diketahui pertidaksamaan kuadrat seperti berikut. x2 β x + 2 β€ β x2 + x + 6 Nilai x yang memenuhi sistem pertidaksamaan tersebut adalah {-1, 0, 1, 2} {0, 1} {-2, -1, 0, 1} {1, 2, 3, 4} {2, 3} Pembahasan Mula-mula, ubahlah bentuk pertidaksamaan tersebut menjadi bentuk pertidaksamaan kuadrat. Lalu, lakukan pemfaktoran. x2 β x + 2 β€ β x2 + x + 6 β x2 β x + 2 + x2 β x β 6 β€ 0 β 2x2 β 2x β 4 β€ 0 β x2 β x β 2 β€ 0 β x β 2x + 1 β€ 0 Tentukan titik pembuat nolnya. x β 2x + 1 β€ 0 β x = 2 atau x = -1 Substitusikan nilai x pembuat nol pada garis bilangan. Jadi, nilai x yang memenuhi adalah {-1, 0, 1, 2}. Jawaban A Contoh Soal 7 Perhatikan pertidaksamaan kuadrat berikut. x2 β 9x + 14 β₯ 22 Nilai x yang termasuk solusi dari pertidaksamaan tersebut adalah 10 7 5 6 4 Pembahasan Mula-mula, ubahlah bentuk pertidaksamaan pada soal menjadi pertidaksamaan kuadrat seperti berikut. x2 β 9x + 14 β₯ 22 β x2 β 9x + 8 β₯ 0 Lakukan pemfaktoran bentuk pertidaksamaan di atas. x2 β 9x + 8 β₯ 0 β x β 8x β 1 β₯ 0 Tentukan titik pembuat nolnya. x β 8x β 1 β₯ 0 β x = 8 atau x = 1 Substitusikan nilai x tersebut ke garis bilangan. Nilai x yang memenuhi adalah x β€ 1 atau x β₯ 8 Jadi, nilai x yang termasuk solusi adalah 10 Jawaban A Contoh Soal 8 Tingkat reproduksi buaya di sebuah pusat penangkaran mengikuti persamaan berikut. dengan t dalam tahun Waktu yang diperlukan untuk menghasilkan paling sedikit 9 buaya adalah Minimal 6 bulan Minimal 2,5 tahun Minimal 1 tahun Minimal 2 tahun Minimal 1,5 tahun Pembahasan Di soal ditanyakan waktu yang dibutuhkan untuk menghasilkan paling sedikit 9 ekor buaya. Secara matematis, bisa dinyatakan sebagai f t β₯ 9. Oleh karena terdapat keterangan βpaling sedikitβ, maka persamaan kuadrat tersebut harus dijadikan pertidaksamaan. f t β₯ 9 β 2t2 + 3t + 4 β₯ 9 β 2t2 + 3t β 5 β₯ 0 Lalu, lakukan pemfaktoran untuk mencari titik pembuat nolnya. 2t2 + 3t β 5 β₯ 0 β 2t + 5t β 1 β₯ 0 β 2t + 5t β 1 = 0 β t = -5/2 = -2,5 atau 1 = 1 Substitusikan nilai t pembuat nol pada garis bilangan. Garis bilangan di atas memuat dua buah solusi, yaitu t β€ -2,5 atau t β₯ 1. Oleh karena waktu tidak ada yang bernilai negatif, maka nilai t yang memenuhi adalah t β₯1. Jadi, waktu yang diperlukan untuk menghasilkan paling sedikit 9 ekor buaya adalah minimal 1 tahun. Jawaban C Contoh Soal 9 Bu Rumini memiliki usaha pengolahan sambal kemasan. Hasil produksi sambal Bu Rumini, mengikuti persamaan berikut. px = x2 β 35x + 400 Dengan px merupakan banyaknya hasil produksi sambal botol dan x merupakan massa cabai dalam kg. Jika Bu Rumini ingin memproduksi maksimal 100 botol sambal, cabai yang harus disediakan adalah 10 sampai 15 kg 20 sampai 25 kg 17 sampai 30 kg 15 sampai 20 kg Lebih dari 30 kg Pembahasan Oleh karena besaran yang diminta adalah jumlah produksi maksimal 100 botol, maka persamaan produksi sambal Bu Rumini harus kamu jadikan pertidaksamaan seperti berikut. px β€ 100 β x2 β 35x + 400 β€ 100 β x2 β 35x + 300 β€ 0 Lakukan pemfaktoran untuk mencari titik pembuat nolnya. x2 β 35x + 300 β€ 0 β x β 20x β 15 = 0 β x = 20 atau x = 15 Jadi, cabai yang harus disediakan adalah 15 sampai 20 kg. Jawaban D Contoh Soal 10 Sebuah bangun persegi panjang memiliki panjang x + 5 cm dan lebar x β 1 cm. Jika luas bangun tersebut tidak boleh lebih dari 40 cm2, nilai x yang memenuhi adalah {-9 β€ x β€ 5} {x β₯ 5} 2, 3, 4, 5 {x β€ 5} {1, 2, 3} Pembahasan Persegipanjang memiliki panjang x + 5 cm dan lebar x β 1 cm dan luasnya tidak boleh lebih dari 40 cm2. Untuk mencari nilai x, ubahlah keterangan tersebut ke dalam bentuk prtidaksamaan. Himpunan penyelesaiannya {-9, -8, -7, β¦, 5} Oleh karena panjang dan lebar tidak mungkin negatif, maka nilai x yang memenuhi adalah {2, 3, 4, dan 5}. Jadi, nilai x yang memenuhi adalah {2, 3, 4, 5}. Jawaban C Setelah melihat 10 contoh soal di atas, apakah Quipperian sudah paham bagaimana cara menyelesaikan soal-soal pertidaksamaan kuadrat?
Apakah Anda mencari gambar tentang Gambar Pertidaksamaan Berikut Pada Garis Bilangan? Terdapat 57 Koleksi Gambar berkaitan dengan Gambar Pertidaksamaan Berikut Pada Garis Bilangan, File yang di unggah terdiri dari berbagai macam ukuran dan cocok digunakan untuk Desktop PC, Tablet, Ipad, Iphone, Android dan Lainnya. Silahkan lihat koleksi gambar lainnya dibawah ini untuk menemukan gambar yang sesuai dengan kebutuhan anda. Lisensi GambarGambar bebas untuk digunakan digunakan secara komersil dan diperlukan atribusi dan retribusi.
Unduh PDF Unduh PDF Anda dapat menggambar pertidaksamaan linear atau pertidaksamaan kuadrat dengan cara yang sama seperti Anda menggambar sebuah persamaan. Perbedaannya adalah bahwa, karena sebuah pertidaksamaan menunjukkan sekumpulan nilai yang lebih besar dari atau kurang dari maka grafik Anda akan menggambarkan lebih dari sekadar titik pada sebuah garis bilangan ataupun sekadar garis pada sebuah bidang koordinat. Dengan menggunakan aljabar dan menilai tanda pertidaksamaan, Anda dapat menentukan manakah nilai-nilai yang termasuk hasil dari sebuah pertidaksamaan. 1 Tentukan variabel. Untuk menyelesaikan pertidaksamaan, pisahkan variabel menggunakan metode aljabar yang sama seperti yang Anda gunakan untuk menyelesaikan sebuah persamaan. [1] Ingatlah bahwa jika Anda mengalikan atau membagi dengan bilangan negatif, Anda perlu membalik tanda pertidaksamaan. 2 Gambarlah sebuah garis bilangan. Masukkan nilai relatif pada garis bilangan nilai yang Anda temukan adalah variabel yang kurang dari, lebih besar dari, atau sama dengan. Buatlah garis bilangan dengan ukuran panjang atau pendek sesuai kebutuhan. Sebagai contoh, jika Anda menemukan bahwa , pastikan untuk menggambarkan sebuah titik untuk 1 pada garis bilangan tersebut. 3 4 Gambarlah panah yang menunjukkan nilai-nilai yang termasuk dalam himpunan penyelesaian. Jika variabel tersebut lebih besar dari nilai relatif, ujung panah harus ke kanan, karena hasilnya mencakup semua nilai yang lebih besar dari bilangan relatif. Jika variabel tersebut kurang dari nilai relatif, ujung panah harus ke kiri, karena hasil tersebut mencakup semua nilai yang kurang dari bilangan relatif. [3] Sebagai contoh, untuk , Anda harus menggambar panah yang mengarah ke kanan, karena hasilnya mencakup semua nilai yang lebih besar dari 1. Iklan 1 2 Gambarlah garis pada sebuah bidang koordinat. Untuk mengerjakannya, ubah pertidaksamaan menjadi persamaan, kemudian buatlah grafik seperti Anda menggambar sebuah garis persamaan lain.[5] Tandai posisi titik potong y, lalu gunakan kemiringan untuk menggambar titik-titik lain pada garis tersebut. 3 4 Iklan 1 2 Gambarlah garis tersebut pada bidang koordinat. Untuk mengerjakannya, ubah pertidaksamaan menjadi persamaan, dan gambarlah garis tersebut seperti yang biasa Anda lakukan. Karena Anda memiliki persamaan kuadrat, garis tersebut akan berbentuk parabola.[9] 3 4 Carilah beberapa titik untuk menguji. Untuk menentukan area mana yang harus diarsir, Anda perlu mengambil beberapa titik dari dalam maupun luar parabola. 5 Arsir area yang tepat. Untuk menentukan area mana yang harus diarsir, masukkan nilai-nilai dari dan dari titik-titik penguji ke dalam pertidaksamaan semula. Titik mana pun yang memberikan pertidaksamaan yang benar menunjukkan area di dalam grafik yang harus diarsir. [11] Iklan Selalu sederhanakan pertidaksamaan lebih dahulu sebelum menggambarnya. Jika Anda benar-benar mengalami kebuntuan, Anda dapat memasukkan pertidaksamaan tersebut ke dalam kalkulator grafik dan berusaha mengerjakannya sebaik mungkin. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Dalam menyelesaikan suatu pertidaksamaan, membuat garis bilangan adalah salah satu tahapan yang perlu kita lakukan, terutama jika pertidaksamaan tersebut memiliki beberapa titik kritis atau pembuat nol seperti pertidaksamaan polynomial atau pertidaksamaan rasional . Secara umum, berikut inilah tahapan-tahapan dalam menyelesaikan pertidaksamaan Jadikan ruas kanan pertidaksamaan bernilai $0$ Faktorkan / tentukan titik kritis pembuat nol Buat garis bilangan Tentukan tanda $+$ atau $-$ setiap interval pada garis bilangan Tentukan himpunan penyelesaian. Untuk pertidaksamaan linear dan pertidaksamaan kuadrat, masih dapat dengan mudah kita selesaikan bahkan tanpa membuat garis bilangan. Namun untuk pertidaksamaan yang memuat beberpa faktor atau memiliki banyak titik kritis, membuat garis bilangan menjadi hal yang perlu untuk kita lakukan dalam menentukan himpunan penyelesaian, seperti pertidaksamaan berikut ini $\displaystyle x^2 \left2x-3\right^3 \leftx-3\right^2 \left2x-7\right\lt 0$ Pertidaksamaan di atas, memiliki $4$ titik kritis, yaitu $x=0$, $x=\frac{3}{2}$, $x=3$ dan $x=\frac{7}{2}$, sehingga jika kita buat garis bilangannya sebagai berikut Seperti kita lihat pada garis bilangan di atas, $4$ titik kritis menyebabkan terbentuknya lima buah interval daerah yang perlu kita uji tanda pada masing-masing interval apakah $+$ atau $-$. Jika kita lakukan pengujian dengan mengambil sembarang titik uji pada masing-masing interval, misalnya pada interval I $x\lt 0$ kita ambil $x=-1$ sebagai titik uji, pada interval II $0\lt x\lt \frac{3}{2}$ kita ambil $x=1$ sebagai titik uji, bagaimana dengan interval IV $\left 3\lt x\lt \frac{7}{2}\right$? tentunya kita tidak bisa mengambil $x$ bilangan bulat sebagai titik uji, tentu ini akan cukup "merepotkan". Berikut ini tips cara mudah menentukan tanda $+$ atau $-$ pada garis bilangan tanpa menggunakan titik uji. Tips Marthen Kanginan Bagi yang berkecimpung di "dunia" matematika dan fisika pasti sudah tidak asing dengan nama Marthen Kanginan, sudah banyak buku karya beliau yang beredar dan memberikan kontribusi yang sangat besar untuk pendidikan di negeri ini, sama halnya seperti penulis besar lainnya seperti Pak Sukino salah satu ide kreatif pak Sukino adalah Horner-Kino , Pak Suwah Sembiring, Pak Husein Tampomas dan penulis lainnya yang sudah memberikan ide dan karya luar biasa untuk kita manfaatkan, semoga kesehatan selalu menyertai beliau semua saya rekomendasikan anda membeli buku karya-karya beliau, InsyaAlloh sangat bermanfaat. Salah satu tips yang di berikan pak Marthen Kanginan adalah bagaimana cara mudah menentukan tanda $+$ atau $-$ pada garis bilangan dalam menyelesaiakan pertidaksamaan tanpa menggunkan titik uji. Berikut ini langkah-langkah tips Marthen Kanginan Tips Marthen Kanginan Cara mudah menentukan tanda pada garis bilangan dengan langkah-langkah sebagai berikut Tentukan tanda pada daerah paling kanan hanya dengan mengalikan koefisien $x$ dari tiap-tiap fakor Untuk daerah interval lainnya, gunakan aturan sebagai berikut "ketika melewati titik kritis, tanda bergantian kecuali ketika melewati titik kritis yang berasal dari $x^2$ atau $ax+b^2$ atau $ax+b^n$ dengan $n$ genap maka tanda tetap. Sebagai contoh, kita akan menyelesaikan pertidaksamaan yang tadi, sebagai berikut $\displaystyle x^2 \left2x-3\right^3 \leftx-3\right^2 \left2x-7\right\lt 0$ Dari pertidaksamaan di atas, kita peroleh titik kritis $x=0$, $x=\frac{3}{2}$, $x=3$ dan $x=\frac{7}{2}$, maka garis bilangannya sebagai berikut Langkah pertama dari tips Marthen Kanginan adalah kita tentukan tanda pada interval paling kanan, dalam soal ini berarti interval V. Tanda pada interval paling kanan ditentukan oleh koefisien dari masing-masing variable $x$ setiap faktor. Maka kita peroleh $x^22xx2x=$ Positif Maka daerah paling kanan bernilai positif $+$ Berikutnya, kita tentukan tanda pada interval lainnya dengan aturan jika melewati titik kritis yang berasal dari faktor berpangkat genap, maka tanda tetap. Pada pertidaksamaan di atas, $\frac{7}{2}$ berasal dari $2x-7$ pangkat ganjil maka ketika melewati $\frac{7}{2}$ tanda berubah $3$ berasal dari $x-3^2$ pangkat genap maka ketika melewati $3$ tanda tetap $\frac{3}{2}$ berasal dari $2x-3^3$ pangkat ganjil maka ketika melewati $\frac{3}{2}$ tanda berubah $0$ berasal dari $x^2$ pangkat genap, maka ketika melewati $0$ tanda tetap untuk lebih jelasnya perhatikan garis bilangan berikut Maka penyelesaian pertidaksamaan $x^22x-3^3x-3^22x-7\lt 0 $ adalah daerah dengan tanda negatif karena pertidaksamaan memiliki tanda $\lt 0$ negatif, maka penyelesaiannya seperti ditunjukkan oleh gambar berikut Yaitu $\displaystyle\frac{3}{2}\lt x\lt 3$ atau $\displaystyle 3\lt x\lt\frac{7}{2}$ Untuk lebih jelas, perhatikan beberapa contoh lain berikut ini Contoh 1 Tentukan penyelesaian dari pertidaksamaan $x-1x-2^2x-3^3x-4\leq 0$ Jawab Titik kritis pertidaksamaan di atas adalah $x=1$, $x=2$, $x=3$, dan $x=4$. Interval paling kanan positif, titik kritis yang berasal dari faktor dengan pangkat genap adalah $x=2$, dengan demikian tanda tidak berubah ketika melewati $x=2$ maka garis bilangannya adalah Bulatan pada garis bilangan "penuh/berisi" karena, tanda pada pertidaksamaan $\leq 0$ memuat tanda sama dengan, artinya titik kritis termasuk penyelesaian. Jadi, penyelesaian dari pertidaksamaan $x-1x-2^2x-3^3x-4\leq 0$ adalah $x\leq 1$ atau $3\leq x\leq 4$ Contoh 2 Tentukan penyelesaian dari $\displaystyle\frac{x-1x-2^3}{x-3^2x-4}\geq 0$ Jawab Titik kritis pertidaksamaan di atas adalah $x=1$, $x=2$, $x=3$ dan $x=4$. Tanda pada interval paling kanan positif, karena koefisien semua variabel $x$ positif. Titik kritis yang berasal dari faktor pangkat genap adalah $x=3$, dengan demikian tanda tidak berubah ketika melewati $x=3$. Meskipun tanda pada pertidaksamaan memuat sama dengan $\geq 0$, namun untuk titik kritis yang berasal dari penyebut diberi "bulatan kosong", artinya titik kritis tersebut tidak termasuk penyelesaian. Jadi, penyelesaian dari pertidaksamaan $\displaystyle\frac{x-1x-2^3}{x-3^2x-4}\geq 0$ adalah $1\leq x\leq 2$ atau $x\gt 4$ Contoh 3 Tentukan penyelesaian dari pertidaksamaan $x^22x^2-x\lt x^22x+5$ Jawab \begin{align*}x^22x^2-x-x^22x+5&\lt 0\\ x^22x^2-x-2x+5&\lt 0\\x^22x^2-3x-5 &\lt 0\\x^22x-5x+1&\lt 0\end{align*} Titik kritis $x=0$, $x=\frac{5}{2}$ dan $x=-1$. Tanda pada interval paling kanan positif. Titik kritis yang berasal dari faktor dengan pangkat genap adalah $x=0$, maka ketika melewati $x=0$ tanda tidak berubah. Jadi, penyelesaian dari pertidaksamaan $x^22x^2-x\lt x^22x+5$ adalah $-1\lt x\lt 0$ atau $0\lt x\lt \frac{5}{2}$ Jika anda masih belum paham, sebaiknya lihat video pembahasannya disini Demikianlah cara mudah menentukan tanda $+$ atau $-$ garis bilangan dengan tips Marthen Kanginan. Semoga bermanfaat. Untuk latihan pertidaksamaan secara online bisa anda coba soal berikut ini
Sobat Zenius, mungkin elo udah familiar dengan cara penyelesaian pertidaksamaan berikut x β 4 > 2. Berapa, hasilnya? Yup, pasti elo bakal menjawab dengan x > 6. Jawaban elo betul, tapi, kali ini kita akan membahas pertidaksamaan polinomial dan cara kita mencari nilai x akan berbeda. Gimana tuh, cara menyelesaikan pertidaksamaan polinomial? Simak artikel ini sampai akhir, ya! Menentukan Nilai Titik KritisContoh Soal Pertidaksamaan PolinomialPenutup dan Contoh Soal Latihan Menentukan Nilai Titik Kritis Dalam mencari nilai x pada sebuah pertidaksamaan polinomial, elo harus mencari yang namanya nilai titik kritis. Caranya adalah dengan menentukan letak nilai positif dan negatif dalam garis bilangan. Sebagai contoh, gue akan pakai pertidaksamaan yang tadi, x β 4 > 2. Hasilnya tadi kan x > 6 dan masih kita bisa ubah lagi menjadi x β 6 > 0. Kalau elo gambar garis bilangannya, jadinya akan seperti berikut Kenapa gue bisa tandai yang ke kiri negatif dan yang ke kanan positif? Kalau elo coba masukkan nilai x lebih kecil dari 6, elo akan mendapatkan hasil negatif. Tapi, kalau nilai x lebih besar dari 6, hasilnya akan positif. Karena dalam pertidaksamaan, nilai x harus bisa menghasilkan x > 0, maka elo ambil nilai x yang hasilnya positif. Jadi, nilai x yang memenuhi pertidaksamaan x β 6 > 0 adalah x > 6. Gampang, kan? Nah, tapi, bentuk pertidaksamaan polinomial itu ada banyak sekali, dan penyelesaiannya juga beragam. Tapi tenang aja, gue udah siapkan beberapa contoh pertidaksamaan polinomial lengkap dengan penyelesaiannya supaya elo lebih mantap belajarnya. Yuk kita caw! Baca Juga Rumus Persamaan Kuadrat dan Akar-akarnya Contoh Soal Pertidaksamaan Polinomial 1. Untuk pertidaksamaan ini, kita gambar dulu garis-garis bilangannya. Cara mengalikan tanda-tanda pada garis bilangan Arsip Zenius Setelah elo gambar, elo kalikan tanda- tanda positif dan negatif dari kedua garis bilangan di atas. Maka, elo akan mendapatkan garis bilangan seperti gambar berikut ini Hasil mengalikan tanda-tanda pada garis bilangan Arsip Zenius Jadi, nilai x yang memenuhi pertidaksamaan adalah atau 2. Kalikan juga garis bilangannya seperti yang udah gue jelaskan tadi, dan elo akan mendapatkan garis bilangan berikut Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . 3. Supaya hasilnya lebih terjamin benernya, kita rapikan dulu yuk, pertidaksamaannya. Gue mau pindahin x yang ada di biar jadi di depan. Tapi kalau langsung ditukar aja tempatnya, jadinya malah , kan? Biar lebih oke, kita hilangkan dulu tanda negatifnya dengan mengalikan pertidaksamaannya dengan -1 dan menjadi . Kalau sebuah pertidaksamaan dikalikan dengan -1, maka tandanya akan berubah jadi berlawanan arah. Sekarang, kita buat garis bilangannya! Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . Elo bisa nonton video penyelesaian pertidaksamaan polinomial ini lengkap dengan contoh lainnya, lho! Dimana? Tinggal klik aja banner berikut ini! 4. Kali ini, kita punya bentuk kuadrat. Kalau elo hitung-hitung, mau berapapun nilai x nya kalau hasilnya dipangkatkan genap, pasti hasilnya positif, kan? Makanya elo nggak perlu repot-repot mengalikan garis bilangannya. Langsung aja pake yang . Jadi, nilai x yang memenuhi pertidaksamaan di atas adalah . 5. Kalau kita tinggalin aja yang berpangkat genap dan gambar garis bilangannya, maka akan menjadi seperti berikut Maka kita akan dapat nilai . Tapi nih, meskipun yang berpangkat genap tadi kita cuekin karena nggak ada pengaruhnya ke garis bilangan, jangan dibiarkan begitu aja ya, nanti dia nangis. Mereka tetap bisa memenuhi pertidaksamaan dengan menghasilkan 0. So, kita masih punya x = 2 dan x = -1. Jadi, nilai x yang memenuhi pertidaksamaan tadi adalah x = -1 atau ini udah termasuk x=2, yaps! 6. Sementara, kita punya nilai . Coba elo cek lagi yang berpangkat genap. Ternyata, hasilnya 0. Yang diminta adalah nilai x yang memenuhi pertidaksamaan dan menghasilkan < 0. Berarti, x = -2, x = 1, dan x = 2 kita buang aja. Maka, nilai x yang memenuhi pertidaksamaan adalah atau atau atau . 7. Kalau pecahan gimana, dong? Caranya sama aja ya, elo gambar dulu garis bilangannya seperti biasa. Maka elo bakal dapet atau . Tapi, perlu diingat, kalau dalam pecahan, apapun yang dibagi 0 hasilnya akan tidak terhingga. Jadi disini, penyebutnya harus . Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . 8. Kok, nggak ada kurung-kurungnya? Tenang, ini masih kita bisa ubah bentuknya menjadi . Jadi, nilai x yang memenuhi pertidaksamaan adalah atau . Jawaban ini juga bisa elo buktikan dengan menggambar grafiknya, lho! Caranya bisa elo simak di sini. 9. Yang ini juga kita faktorkan dulu, ya. Hasilnya akan menjadi Kalau elo gambar grafik pertidaksamaan tadi, elo akan punya kurva yang terbuka ke atas seperti berikut Grafik pertidaksamaan polinomial Arsip Zenius Maka, nilai x yang memenuhi adalah atau . Baca Juga Konsep, Grafik, & Rumus Fungsi Kuadrat Penutup dan Contoh Soal Latihan Coba kerjakan soal latihannya, yuk! Dok. Pixabay Ada berbagai bentuk dan cara penyelesaian pertidaksamaan polinomial dan elo baru aja mempelajarinya. Di penghujung artikel ini, gue mau kasih elo contoh-contoh soal lagi untuk elo coba kerjain sambil mengasah kemampuan elo. Nilai x berikut ini yang memenuhi pertidaksamaan adalah β¦.A. 0B. 1C. 2D. 3Penyelesaian dari pertidaksamaan adalah β¦.A. B. atau C. D. atau Penyelesaian dari pertidaksamaan adalah β¦.A. atau B. atau C. atau D. atau Pembahasan 1. Jawaban D. Garis bilangan pertidaksamaannya adalah sebagai berikut Maka, atau . Jadi, nilai x yang memenuhi yang ada dalam pilihan jawaban adalah 3. 2. Jawaban D. Garis bilangan pertidaksamaannya adalah sebagai berikut Jadi, penyelesaiannya adalah atau 3. Jawaban B. Garis bilangan pertidaksamaannya adalah sebagai berikut Jadi, penyelesaiannya adalah atau . Oke deh, sekian dulu pembahasan pertidaksamaan polinomial di artikel ini. Jumpa lagi di tulisan gue lainnya, ya! Baca Juga Pengertian dan Penerapan Polinomial Suku Banyak β Materi Matematika Kelas 11
gambar pertidaksamaan berikut pada garis bilangan